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1 - Introduction

@ Black holes are objects whose behavior involves both general relativity and
quantum field theory. Consequently, it is important to fully understand these
objects in the hopes finding some hints for a quantum gravity theory.

@ Although black holes have been widely studied by now, there are still some
open problems. One of those problems concerns the location of the degrees of
freedom of the black hole entropy given by the Bekenstein-Hawking formula

1A
412
@ In this work we will try to answer this question by studying the

thermodynamics of a thin matter shell in a d-dimensional spacetime, whose
radius is taken to it's horizon limit.
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The thin shell formalism
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Vvt z, gzﬁ

z“, Yap

V™22, 9.

0z
Tangent vectors: ej =
oy°
Differential of a path: dz® = ej dy®

Metric at ¥ :  ds% = gagd:vo‘d:vﬁ = hapdy®dy®

where hg, = gageg‘ef is called the induced metric at X.
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V7 :1<0

Normal vectors: dx® = n%dl = ny, = €041

Jump of a quantity: [A]=A (V)| —A(V")

s s

where e = n“n,, can be +1 (timelike hypersurface) or -1 (spacelike hypersurface).
Since z%, y® are continuous across X, we have
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2.2 - First junction condition

The metric for the whole spacetime can be written as

Jop = @(l)gi_ﬁ + @(_l)g;ﬁ

where O(!) is the Heaviside distribution. However, we need to guarantee that this
is a valid solution of the Einstein equations

1
Raﬁ - §gaﬂR = 87TGdTa5 .

We do that by checking if the geometric quantities of interest make sense. The
first problematic quantity is

Japy = @(Z)g;_ﬁ,fy +O(=1)g,5., +€6(1) [gap] Ny,

since it will give rise to terms like ©(1)d(1), unless we impose [gns] = 0. A more
useful form is

[hab] =0
since is independent of the coordinates . This is the first junction condition.
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2.3 - Second junction condition

The remaining interesting term arises when calculating the Riemann tensor, which
gives
Ry =O()R™G,s + O(=1)R™ G5+ 0(1) A% 35

where
A%gys = e ([[%gs] ny — [y ns)

is the singular part of the Riemann tensor, to which is assigned the stress-energy

tensor
5

ey ([Kap] — [

Therefore, to eliminate the singular part of the curvature, we must have S,, = 0,
or equivantely,

Sab = K] hap) -

(K] = 0.

This is called the second junction condition. If it not satisfied, than there is
distribution of matter at X, called a thin matter shell, with stress-energy tensor
Sap-
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The (d-1)-dimensional shell and the black hole

limit
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3.1 - The (d-1)-dimensional shell spacetime

ds

Parametric equations of the shell:

dr?

= —Fy(r)dt* + o)

2
+

F.(ry=1- ET"B% = d-dimensional Schwarzschild

87TGd

2 QQ —
+r°d d—2» 1% (d— Z)Qd—Q

F_(r)y=1 = Minkowski

dst = —dr? + R?*dQ3%_,
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= S4_o metric at X

Perfect fluid

5% = (o+p)uup+ph™y
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3.1 - The (d-1)-dimensional shell spacetime

Non-null components of S%; in the static limit:

(@21 s
871Gy R
2m
_@=3)VImRes ol (@d-3) gt
P~ 8ncy R 8§7Ga | _ 2ma

o\ 1/2
k= (1 _ <T_+)(d 3)> (redshift
R factor)

e = (2um)
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3.2 - The entropy of a (d-1)-dimensional shell

First Law of Thermodynamics: T'dS = dM + pdA

The integrability condition must be satisfied (8 = 1/T)

(51),, = (ai1),

From it we can obtain the differential for the inverse temperature

(3_ﬂ) (d—3)1— )

oR) T

which can be integrated to give the analytic solution
Bry, R) =b(ry)k.
Inserting this and the mechanical equations of the shell in the first law, we obtain

_ (d—-3)
ds = 5

b(r+)ri_4dr+ .

To further advance, one needs to specify the function b(r4 ).
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3.3 - Intrinsic stability of a (d-1)-dimensional shell

The most simple suggestion for b(ry) is a

Thermodynamic stability equations power-law equation of the form

03,5 <0 - pald=2)+1
— +
81248 S 0 b(T+) - E lg(d72)

92,5) (0%4S) — (91daS)* > 0
( M )( A ) (On045)" Inserting in the differential for the entropy

gives the explicit expression

(a+1)(d-2)
n r
S0P~ ()

All together, the stability conditions imply the restrictions

d— _
<2273 o o<k< -3
d—2 (

2a + 1)d — (4a + 1)

— a—24=3 —
aZQd 3 N diQSk_ d—3
d—2 a+2 (2a+1)d — (4a+1)
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3.4 - Entropy of a (d-1)-dimensional shell in the BH

limit

» Take the shell to its horizon radius R — r, which doesn’t affect the form of
the entropy. Quantum fields must be present and their backreaction diverges
unless we choose the inverse of the Hawking temperature for b(r4);

» Hence, fix b(ry) = ﬁ where Ty = £ (4=5)

T Arm rg

Inserting this specific form for b(r,) in the differential of the entropy and
integrating, leads to the entropy

Qd_g ’I‘i_Q A
M,R) = =
SALR) = = G alg—?

and so we obtain in this limit the Bekenstein-Hawking entropy of a d-dimensional
Schwarzschild black hole. Note that this corresponds to the case a = 0 and
n = (d —2)Q4_2/4 in the previous ansatz.
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4 - Conclusions

@ The entropy differential for a thin shell in a d-dimensional Schwarzschild

spacetime
d—3
dS = (Z—M)b(T+)Ti_4dT+
was obtained, where an arbitrary function b(r) related to the temperature of
the shell naturally appeared.

o By fixing the temperature with a phenomenological function, it was possible
to obtain an exact expression for the entropy of the shell, which in turn led to
an intrinsic stability analysis of its thermodynamics.

@ When the shell was taken to the black hole limit, it returned the
Bekenstein-Hawking entropy of the black hole in that corresponding
spacetime. This leads to the suggestion that the degrees of freedom of a
black hole are located at the horizon. Other spacetime choices can also be
shown to give the Bekenstein-Hawking entropy for the black holes in the
corresponding spacetimes, which supports the conclusion made here.
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