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Gonçalo Martins Quinta 1 / 15 Black hole entropy in d-dimensions through thin matter shells 18 December 2014 1 / 15



Table of contents

1 Introduction

2 The thin shell formalism

3 The (d-1)-dimensional shell and the black hole limit

4 Conclusions
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1 - Introduction

Black holes are objects whose behavior involves both general relativity and
quantum field theory. Consequently, it is important to fully understand these
objects in the hopes finding some hints for a quantum gravity theory.
Although black holes have been widely studied by now, there are still some
open problems. One of those problems concerns the location of the degrees of
freedom of the black hole entropy given by the Bekenstein-Hawking formula

S = 1
4
A

l2p
.

In this work we will try to answer this question by studying the
thermodynamics of a thin matter shell in a d-dimensional spacetime, whose
radius is taken to it’s horizon limit.
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The thin shell formalism
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2.1 - Problem setup

Tangent vectors: eαa = ∂xα

∂ya

Differential of a path: dxα = eαady
a

Metric at Σ : ds2
Σ = gαβdx

αdxβ = habdy
adyb

where hab = gαβe
α
ae
β
b is called the induced metric at Σ.
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2.1 - Problem setup

Normal vectors: dxα = nαdl⇒ nα = ε∂αl

Jump of a quantity: [A] ≡ A
(
V +) ∣∣

Σ −A
(
V −) ∣∣

Σ

where ε = nαnα can be +1 (timelike hypersurface) or -1 (spacelike hypersurface).
Since xα, ya are continuous across Σ, we have

[nα] = [eαa ] = 0.
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2.2 - First junction condition

The metric for the whole spacetime can be written as

gαβ = Θ(l)g+
αβ + Θ(−l)g−

αβ

where Θ(l) is the Heaviside distribution. However, we need to guarantee that this
is a valid solution of the Einstein equations

Rαβ −
1
2gαβR = 8πGdTαβ .

We do that by checking if the geometric quantities of interest make sense. The
first problematic quantity is

gαβ,γ = Θ(l)g+
αβ,γ + Θ(−l)g−

αβ,γ + εδ(l) [gαβ ]nγ ,

since it will give rise to terms like Θ(l)δ(l), unless we impose [gαβ ] = 0. A more
useful form is

[hab] = 0

since is independent of the coordinates xα. This is the first junction condition.
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2.3 - Second junction condition

The remaining interesting term arises when calculating the Riemann tensor, which
gives

Rαβγδ = Θ(l)R+α
βγδ + Θ(−l)R−α

βγδ + δ(l)Aαβγδ
where

Aαβγδ = ε ([Γαβδ]nγ − [Γαβγ ]nδ)

is the singular part of the Riemann tensor, to which is assigned the stress-energy
tensor

Sab = − ε

8πGd
([Kab]− [K]hab) .

Therefore, to eliminate the singular part of the curvature, we must have Sab = 0,
or equivantely,

[Kab] = 0.

This is called the second junction condition. If it not satisfied, than there is
distribution of matter at Σ, called a thin matter shell, with stress-energy tensor
Sab.
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The (d-1)-dimensional shell and the black hole
limit
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3.1 - The (d-1)-dimensional shell spacetime

ds2
± = −F±(r)dt2 + dr2

F±(r) + r2dΩ2
d−2, µ = 8πGd

(d− 2)Ωd−2

 F+(r) = 1− 2mµ
rd−3 ⇒ d-dimensional Schwarzschild

F−(r) = 1 ⇒ Minkowski

ds2
Σ = −dτ2 +R2dΩ2

d−2 ⇒ Sd−2 metric at Σ

Parametric equations of the shell:

 r ≡ R(τ)

t ≡ T (τ)

Perfect fluid

Sab = (σ+p)uaub+phab
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3.1 - The (d-1)-dimensional shell spacetime

Non-null components of Sab in the static limit:

σ = (d− 2)
8πGd

1−
√

1− 2mµ
Rd−3

R

p = (d− 3)
8πGd

√
1− 2mµ

Rd−3 − 1
R

+ (d− 3)
8πGd

mµ
Rd−2√

1− 2mµ
Rd−3

Shell’s rest mass: M = Aσ where A is the area of the shell A = Ωd−2R
d−2

Mechanical equations of the shell:

M = Rd−3

µ
(1− k)

p = (d− 3)(1− k)2

2(d− 2)Ωd−2Rkµ

k =
(

1 −
(
r+

R

)(d−3)
)1/2

r+ = (2µm)1/(d−3)

(redshift
factor)
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3.2 - The entropy of a (d-1)-dimensional shell
First Law of Thermodynamics: TdS = dM + pdA

The integrability condition must be satisfied (β ≡ 1/T )(
∂β

∂A

)
M

=
(
∂βp

∂M

)
A

From it we can obtain the differential for the inverse temperature(
∂β

∂R

)
r+

= (d− 3)(1− k2)
2k2R

β

which can be integrated to give the analytic solution

β(r+, R) = b(r+)k .

Inserting this and the mechanical equations of the shell in the first law, we obtain

dS = (d− 3)
2µ b(r+)rd−4

+ dr+ .

To further advance, one needs to specify the function b(r+).
Gonçalo Martins Quinta 12 / 15 Black hole entropy in d-dimensions through thin matter shells 18 December 2014 12 / 15



3.3 - Intrinsic stability of a (d-1)-dimensional shell

Thermodynamic stability equations

∂2
MS ≤ 0

∂2
AS ≤ 0(

∂2
MS
) (
∂2
AS
)
− (∂M∂AS)2 ≥ 0

The most simple suggestion for b(r+) is a
power-law equation of the form

b(r+) = η0

~
r
a(d−2)+1
+

l
a(d−2)
p

Inserting in the differential for the entropy
gives the explicit expression

S(M,R) = η

(a+ 1)(d− 2)

(
r+

lp

)(a+1)(d−2)
.

All together, the stability conditions imply the restrictions

a ≤ 2
d− 3
d− 2

⇒ 0 ≤ k ≤

√
d− 3

(2a + 1)d− (4a + 1)

a ≥ 2
d− 3
d− 2

⇒
a− 2 d−3

d−2
a + 2

≤ k ≤

√
d− 3

(2a + 1)d− (4a + 1)
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3.4 - Entropy of a (d-1)-dimensional shell in the BH
limit

Take the shell to its horizon radius R→ r+, which doesn’t affect the form of
the entropy. Quantum fields must be present and their backreaction diverges
unless we choose the inverse of the Hawking temperature for b(r+);
Hence, fix b(r+) = 1

TH
where TH = ~

4π
(d−3)
r+

.

Inserting this specific form for b(r+) in the differential of the entropy and
integrating, leads to the entropy

S(M,R) =
Ωd−2 r

d−2
+

4Gd~
= A

4ld−2
p

and so we obtain in this limit the Bekenstein-Hawking entropy of a d-dimensional
Schwarzschild black hole. Note that this corresponds to the case a = 0 and
η = (d− 2)Ωd−2/4 in the previous ansatz.
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4 - Conclusions

The entropy differential for a thin shell in a d-dimensional Schwarzschild
spacetime

dS = (d− 3)
2µ b(r+)rd−4

+ dr+

was obtained, where an arbitrary function b(r+) related to the temperature of
the shell naturally appeared.
By fixing the temperature with a phenomenological function, it was possible
to obtain an exact expression for the entropy of the shell, which in turn led to
an intrinsic stability analysis of its thermodynamics.
When the shell was taken to the black hole limit, it returned the
Bekenstein-Hawking entropy of the black hole in that corresponding
spacetime. This leads to the suggestion that the degrees of freedom of a
black hole are located at the horizon. Other spacetime choices can also be
shown to give the Bekenstein-Hawking entropy for the black holes in the
corresponding spacetimes, which supports the conclusion made here.
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