Dynamics and thermodynamics of a rotating thin shell in a (2+1)-dimensional asymptotically AdS spacetime

Francisco João Lopes

CENTRA - Instituto Superior Técnico - Universidade de Lisboa

centra multidisciplinary centre for astrophysics

December 18, 2014

Preface

Work done in colaboration with

- José P. S. Lemos
- Gonçalo M. Quinta
- Jorge V. Rocha.
- Research done in group GRIT of CENTRA (Centro Multidisciplinar de Astrofísica) at the Physics Department of IST.
- Partially supported by Fundação para a Ciência e Tecnologia (FCT), through project Incentivo/FIS/UI0099/2014.

Overview

1 Introduction

- 2 Dynamics of rotating thin matter shells in a (2+1)-dimensional asymptotically AdS (anti de Sitter) spacetime
- 3 Thermodynamics of slowly rotating thin matter shells in a (2+1)-dimensional asymptotically AdS (anti de Sitter) spacetime

4 Conclusions

1. Introduction

- Martinez (1996) presented the thermodynamics of a thin matter shell in (3+1)-dimensions.
- Lemos and Quinta (2014) obtained the thermodynamics of a thin matter shell in a (2+1)-dimensional asymptotically AdS spacetime.
- Both obtained the Bekenstein-Hawking entropy of a black hole when the shell is taken to its own gravitational radius.
- The interest in (2+1)-dimensional spacetimes suffered an increment after the discovery of a black hole solution in spacetimes asymptotically AdS, the Bañados-Teitelbom-Zanelli (BTZ) black hole.

In 2+1 dimensions, Einstein's equation with cosmological constant is

$$G_{\alpha\beta} = 8\pi G_3 T_{\alpha\beta} + \Lambda g_{\alpha\beta}$$

The exterior metric is given by the BTZ line element written in coordinates (t_o, r, ϕ) $ds_o^2 = -\left(\frac{r^2}{l^2} - 8G_3m\right) dt_o^2 + \frac{dr^2}{\left(\frac{r^2}{l^2} - 8G_3m + \frac{16J^2G_3^2}{r^2}\right)} - 8G_3Jdt_od\phi + r^2d\phi^2, \quad r \ge R$

where $I^2 = -1/\Lambda$.

• We introduce the horizon radii r_{\pm}

$$r_{\pm} = 2I \sqrt{G_3 m \pm \sqrt{G_3^2 m^2 - \frac{J^2 G_3^2}{I_2^2}}}_{5.16}$$

The interior metric is m = 0 BTZ spacetime written in coordinates (t_i, ρ, ψ)

$$ds_i^2 = g_{\alpha\beta}^- dx^lpha dx^eta = - rac{
ho^2}{l^2} dt_i^2 + rac{l^2}{
ho^2} d
ho^2 +
ho^2 d\psi^2, \quad
ho \leq R$$

- The induced metric, as viewed from the exterior region, is $ds_{\Sigma}^{2} = -\left(\frac{R^{2}}{l^{2}} - 8G_{3}m\right) dt_{o}^{2} - 8G_{3}Jdt_{o}d\phi + R^{2}d\phi^{2}$
- \blacksquare We define the new polar coordinate ψ by $\psi = \phi \Omega t_o$
- The line element is diagonal if $\Omega = \frac{4G_3J}{R^2}$

Therefore, in coordinates $y^a = (t, \psi)$, where $t \equiv t_o$, the induced metric is $ds_{\Sigma}^2 = -\left(\frac{R^2}{l^2} - 8G_3m + \frac{16J^2G_3^2}{R^2}\right) dt^2 + R^2 d\psi^2 = 0$

• The induced metric, as viewed from the interior region, is B^2

$$ds_{\Sigma}^2 = -\frac{R^2}{l^2} dt_i^2 + R^2 d\psi^2$$

 Applying the first junction condition, which states that the induce metric must be the same on both sides of the shell, yields

$$\left(\frac{R^2}{l^2} - 8G_3m + \frac{16J^2G_3^2}{R^2}\right)dt_o^2 = \frac{R^2}{l^2}dt_i^2$$

On the other hand, the second junction condition gives the components of the stress-energy tensor

$$S_{b}^{a} = -\frac{1}{8\pi G_{d}} \left([K_{b}^{a}] + [K]h_{b}^{a} \right)$$

where $K_{ab} = n_{\alpha;\beta} e^{\alpha}_{a} e^{\beta}_{b}$, with greek indices running from 0 to 2 and latin indices from 0 to 1, n_{α} is the normal vector to the shell and e^{α}_{a} are the two tangent vectors.

7/16

We want to put these components in a perfect fluid form

$$S^{ab} = \lambda u^a u^b + p \left(h^{ab} + u^a u^b \right)$$

The shell must move rigidly in the ψ direction with an uniform angular velocity ω implying that the velocity vector is

$$u^{a} = \gamma (t^{a} + \omega \psi^{a})$$

where $t^a = \frac{\partial y^a}{\partial t}$ and $\psi^a = \frac{\partial y^a}{\partial \psi}$.

• It is useful to define the redshift $k(R, r_+, r_-)$ as

$$k = \frac{R}{I} \sqrt{\left(1 - \frac{r_+^2}{R^2}\right) \left(1 - \frac{r_-^2}{R^2}\right)}$$

8/16

イロト イロト イヨト イヨト 二日

Therefore

$$\lambda = \frac{1}{8\pi G_3 I} \left(1 - \frac{I}{R} k \right) + \frac{r_+^2 r_-^2}{R^4} \frac{\left(1 - \frac{R^2}{r_+^2} \right)}{8\pi G_3 I^2 k / R}$$

$$p = \frac{1}{8\pi G_3 I} \left[\frac{R}{lk} \left(1 - \frac{r_+^2 r_-^2}{R^4} \right) - 1 \right] + \frac{r_-^2}{R^2} \frac{(R^2 - r_+^2)}{8\pi G_3 I^2 k / R \left(r_+^2 - r_-^2\right)} \left(-\frac{2r_-^2 r_+^2}{R^4} + \frac{r_+^2 + r_-^2}{R^2} \right) \right]$$

$$\omega = \frac{r_-}{r_+ l} - \frac{r_- r_+}{lR^2}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- The thermodynamic variables are (*M*, *A*, *J*).
- $M \equiv 2\pi\lambda R$, $A \equiv 2\pi R$ and J is the angular momentum.
- The first law of thermodynamics is written as

$$TdS = dM + p \, dA - \omega dJ$$

where T is the temperature as measured locally.

 \blacksquare In order to dS be an exact differential ($\beta\equiv 1/{\cal T})$

$$\begin{pmatrix} \frac{\partial \beta}{\partial A} \end{pmatrix}_{M,J} = \begin{pmatrix} \frac{\partial \beta p}{\partial M} \end{pmatrix}_{A,J}$$

$$\begin{pmatrix} \frac{\partial \beta}{\partial J} \end{pmatrix}_{M,A} = -\begin{pmatrix} \frac{\partial \beta \omega}{\partial M} \end{pmatrix}_{A,J}$$

$$\begin{pmatrix} \frac{\partial \beta p}{\partial J} \end{pmatrix}_{M,A} = -\begin{pmatrix} \frac{\partial \beta \omega}{\partial A} \end{pmatrix}_{M,J}$$

$$= -\begin{pmatrix} \frac{\partial \beta \omega}{\partial A} \end{pmatrix}_{M,J}$$

The relevant equations in the slowly rotating limit, $J \ll ml$, are R (J)

$$M = 2\pi R\lambda = \frac{R}{4G_3I} \left(1 - \frac{I}{R}k\right)$$

$$\rho = \frac{1}{8\pi G_3 I} \left(\frac{R}{lk} - 1\right)$$

$$\omega = \frac{r_-}{r_+ l} - \frac{r_- r_+}{lR^2}$$

The first integrability condition is equivalent to

$$\left(\frac{\partial\beta}{\partial R}\right)_{r_+,r_-} = \frac{R}{l^2k^2}\beta \implies \beta(R,r_+) = k(R,r_+)b(r_+)$$

From the integrability conditions we also get $\omega(R, r_+, r_-) = \frac{\omega_0(r_+, r_-)}{k} - \frac{r_+ r_-}{IR^2 k}$

- From the dynamics ω_0 is fixed to be $\omega_0(r_+, r_-) = \frac{r_-}{lr_+}$
- Combining the last results gives

$$dS = \frac{b(r_+)r_+}{4Gl^2}dr_+$$

Taking the black hole limit fixes

$$b(r_{+}) = rac{1}{T_{\mathrm{H}}} = rac{2\pi l^2}{\hbar} rac{1}{r_{+}} \implies S(r_{+}) = rac{\pi r_{+}}{2l_{\mathrm{p}}^2} = rac{A_{+}}{4l_{\mathrm{p}}^2}$$

with $I_{\rm p}=\sqrt{G\hbar}$ and $A_+=2\pi r_+$.

13/16

- The local intrinsic thermodynamical stability of the shell is guaranteed as long as the entropy of the system stays in a maximum
- We prescribe the function $b(r_+)$ as

$$b(r_+) = 4G\alpha l^2 \frac{r_+^a}{l_p^{a+2}}$$

This gives

$$S = \frac{\alpha}{a+2} \left(\frac{r_+}{l_{\rm p}^{a+2}}\right)^{a+2}$$

Therefore, this thermodynamic system is stable if obeys

$$a = -1$$
 and $\frac{R}{r_+} \to \infty$

4. Conclusions

- By using the junction conditions we have obtained the rest mass, pressure and angular velocity (measured at infinity) of a rotating thin matter shell in a (2+1)-dimensional asymptotically AdS spacetime.
- Futhermore, we have studied the thermodynamics of that shell in the slowly rotating limit.
- Inserting those quantities in the first law of thermodynamics led us to the entropy for the thin matter shell up to an arbitrary function of the shell's gravitational radius.
- The matter contained in the shell specifies this function.

4. Conclusions

We also take the shell to its gravitational radius which fixes the temperature to be the Hawking temperature and we recover the Bekenstein-Hawking entropy of a BTZ black hole

$$S_{\rm BH} = \frac{\pi r_+}{2l_{\rm p}^2} = \frac{A_+}{4l_p^2} \,.$$

- This seems to show some evidence that the degrees of freedom of a black hole are situated at its event horizon.
- The general case is an open problem to solve.
- The difficulty relies on interpretating the pressure terms that appear in the first law of thermodynamics.