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1. Introduction

m Martinez (1996) presented the thermodynamics of a thin
matter shell in (3+1)-dimensions.

m Lemos and Quinta (2014) obtained the thermodynamics of a
thin matter shell in a (2+1)-dimensional asymptotically AdS
spacetime.

m Both obtained the Bekenstein-Hawking entropy of a black
hole when the shell is taken to its own gravitational radius.

m The interest in (2+1)-dimensional spacetimes suffered an
increment after the discovery of a black hole solution in
spacetimes asymptotically AdS, the
Bafiados-Teitelbom-Zanelli (BTZ) black hole.



2. Dynamics of rotating thin matter shells in a

(2+1)-dimensional asymptotically AdS spacetime

m In 2+1 dimensions, Einstein's equation with cosmological

constant is
Gaﬁ = 87w G3 Taﬂ + /\gag

m The exterior metric is given by the BTZ line element written

in coordinates (t,, r, ®)
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where 12 = —1/A.
m We introduce the horizon radii r4
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2. Dynamics of rotating thin matter shells in a

(2+1)-dimensional asymptotically AdS spacetime

m The interior metric is m = 0 BTZ spacetime written in
coordinates (t;, p, 1)

12
ds? = g, ydx“dx’ = — T di? + —dp + p?dy?, p<R

The induced metric, as viewed from the exterior region, is

R2
e 8G3m> dt? — 8GzJdt,d¢ + R*d¢?

m We define the new polar coordinate i by
¢ = ¢ - Qt,

m The line element is diagonal if
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m Therefore, in coordinates y? = (t,v), where t = t,, the
induced metric is
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2. Dynamics of rotating thin matter shells in a

(2+1)-dimensional asymptotically AdS spacetime

m The induced metric, as viewed from the interior region, is
R2
ds2 = — = dt? + R%dy?
m Applying the first junction condition, which states that the

induce metric must be the same on both sides of the shell,
yields

R? 16J2G2 R?
<l2—8G3m+ )dt ——dt
m On the other hand, the second junction condition gives the
components of the stress—e?ergy tensor
5§59 = K3 K]h3
b= g (K +IKIM)
where K, = na;ges‘ef, with greek indices running from 0 to 2
and latin indices from 0 to 1, n, is the normal vector to the
shell and ef are the two tangent vectors.



2. Dynamics of rotating thin matter shells in a

(2+1)-dimensional asymptotically AdS spacetime

m We want to put these components in a perfect fluid form
S = \vPub+p (hab + uaub)
m The shell must move rigidly in the 9 direction with an
uniform angular velocity w implying that the velocity vector is
0 = (8 + i)
where t? = % and y? = %—{;.
m It is useful to define the redshift k(R, ry,r_) as




2. Dynamics of rotating thin matter shells in a

(2+1)-dimensional asymptotically AdS spacetime

m T herefore
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2. Dynamics of rotating thin matter shells in a

(2+1)-dimensional asymptotically AdS spacetime

AdS boundary
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3. Thermodynamics of slowly rotating thin matter shells in

a (2+1)-dimensional asymptotically AdS spacetime

m The thermodynamic variables are (M, A, J).
B M=27AR, A=27R and J is the angular momentum.
m The first law of thermodynamics is written as
TdS = dM + pdA — wdJ
where T is the temperature as measured locally.

m In order to dS be an exact differential (3 =1/T)
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3. Thermodynamics of slowly rotating thin matter shells in

a (2+1)-dimensional asymptotically AdS spacetime

m The relevant equations in the slowly rotating limit, J << ml,

are
R /
__1 (R
P = rGsl \ Uk
- rry
il IR

m The first integrability condition is equivalent to

o R
(a@ = 2B = B(R,r) = K(R,r:) b(rs)
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3. Thermodynamics of slowly rotating thin matter shells in

a (2+1)-dimensional asymptotically AdS spacetime

m From the integrabiliy conditions we also get
_wolry,r-) ryre

W(R, r+7r—)_ k - IRQk
m From the dynamics wy is fixed to be
wo(r+, r—) = i
m Combining the last results gives
b(ry)re
ds = d
4Gz =t
m Taking the black hole limit fixes
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with [, =+ Gh and AL =27ry .

13/16



3. Thermodynamics of slowly rotating thin matter shells in

a (2+1)-dimensional asymptotically AdS spacetime

m The local intrinsic thermodynamical stability of the shell is
guaranteed as long as the entropy of the system stays in a
maximum

m We prescribe the function b(ry) as

b(ry) = 4Gal?
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m Therefore, this thermodynamic system is stable if obeys

m This gives

a=-1 and — — o
r+
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4. Conclusions

m By using the junction conditions we have obtained the rest
mass, pressure and angular velocity (measured at infinity) of a
rotating thin matter shell in a (2+1)-dimensional
asymptotically AdS spacetime.

m Futhermore, we have studied the thermodynamics of that shell
in the slowly rotating limit.

m Inserting those quantities in the first law of thermodynamics
led us to the entropy for the thin matter shell up to an
arbitrary function of the shell's gravitational radius.

m The matter contained in the shell specifies this function.
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4. Conclusions

m We also take the shell to its gravitational radius which fixes
the temperature to be the Hawking temperature and we
recover the Bekenstein-Hawking entropy of a BTZ black hole

Ty A+

SBH= 55 = 775 -
22 = ap

m This seems to show some evidence that the degrees of
freedom of a black hole are situated at its event horizon.

m The general case is an open problem to solve.

m The difficulty relies on interpretating the pressure terms that
appear in the first law of thermodynamics.
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