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1. Introduction

Martinez (1996) presented the thermodynamics of a thin
matter shell in (3+1)-dimensions.

Lemos and Quinta (2014) obtained the thermodynamics of a
thin matter shell in a (2+1)-dimensional asymptotically AdS
spacetime.

Both obtained the Bekenstein-Hawking entropy of a black
hole when the shell is taken to its own gravitational radius.

The interest in (2+1)-dimensional spacetimes suffered an
increment after the discovery of a black hole solution in
spacetimes asymptotically AdS, the
Bañados-Teitelbom-Zanelli (BTZ) black hole.
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2. Dynamics of rotating thin matter shells in a
(2+1)-dimensional asymptotically AdS spacetime

In 2+1 dimensions, Einstein’s equation with cosmological
constant is

Gαβ = 8πG3Tαβ + Λgαβ

The exterior metric is given by the BTZ line element written
in coordinates (to , r , φ)

ds2
o =−

(
r2

l2
− 8G3m

)
dt2

o +
dr2(

r2

l2
− 8G3m +

16J2G2
3

r2

)
− 8G3Jdtodφ+ r2dφ2, r ≥ R

where l2 = −1/Λ.

We introduce the horizon radii r±

r± = 2l

√
G3m ±

√
G 2

3m
2 − J2G 2

3

l2
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2. Dynamics of rotating thin matter shells in a
(2+1)-dimensional asymptotically AdS spacetime

The interior metric is m = 0 BTZ spacetime written in
coordinates (ti , ρ, ψ)

ds2
i = g−

αβdx
αdxβ =− ρ2

l2
dt2

i +
l2

ρ2
dρ2 + ρ2dψ2, ρ ≤ R

The induced metric, as viewed from the exterior region, is

ds2
Σ =−

(
R2

l2
− 8G3m

)
dt2

o − 8G3Jdtodφ+ R2dφ2

We define the new polar coordinate ψ by
ψ = φ− Ωto

The line element is diagonal if

Ω =
4G3J

R2

Therefore, in coordinates ya = (t, ψ), where t ≡ to , the
induced metric is

ds2
Σ = −

(
R2

l2
− 8G3m +

16J2G 2
3

R2

)
dt2 + R2dψ2
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2. Dynamics of rotating thin matter shells in a
(2+1)-dimensional asymptotically AdS spacetime

The induced metric, as viewed from the interior region, is

ds2
Σ =− R2

l2
dt2

i + R2dψ2

Applying the first junction condition, which states that the
induce metric must be the same on both sides of the shell,
yields (

R2

l2
− 8G3m +

16J2G 2
3

R2

)
dt2

o =
R2

l2
dt2

i

On the other hand, the second junction condition gives the
components of the stress-energy tensor

Sa
b = − 1

8πGd
([K a

b] + [K ]hab)

where Kab = nα;βe
α
a e

β
b , with greek indices running from 0 to 2

and latin indices from 0 to 1, nα is the normal vector to the
shell and eαa are the two tangent vectors.
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2. Dynamics of rotating thin matter shells in a
(2+1)-dimensional asymptotically AdS spacetime

We want to put these components in a perfect fluid form

Sab = λuaub + p
(
hab + uaub

)
The shell must move rigidly in the ψ direction with an
uniform angular velocity ω implying that the velocity vector is

ua = γ(ta + ωψa)

where ta = ∂ya

∂t and ψa = ∂ya

∂ψ .

It is useful to define the redshift k(R, r+, r−) as

k =
R

l

√(
1−

r2
+

R2

)(
1−

r2
−
R2

)
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2. Dynamics of rotating thin matter shells in a
(2+1)-dimensional asymptotically AdS spacetime

Therefore

λ =
1

8πG3l

(
1− l

R
k

)
+

r2
+r

2
−

R4

(
1− R2/r2

+

)
8πG3l2k/R

p =
1

8πG3l

[
R

lk

(
1−

r2
+r

2
−

R4

)
− 1

]
+

r2
−
R2

(
R2 − r2

+

)
8πG3l2k/R

(
r2
+ − r2

−
) (−2r2

−r
2
+

R4
+

r2
+ + r2

−
R2

)

ω =
r−
r+l
− r−r+

lR2
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2. Dynamics of rotating thin matter shells in a
(2+1)-dimensional asymptotically AdS spacetime
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3. Thermodynamics of slowly rotating thin matter shells in
a (2+1)-dimensional asymptotically AdS spacetime

The thermodynamic variables are (M,A, J).

M ≡ 2πλR, A ≡ 2πR and J is the angular momentum.

The first law of thermodynamics is written as

TdS = dM + p dA− ωdJ
where T is the temperature as measured locally.

In order to dS be an exact differential (β ≡ 1/T )(
∂β

∂A

)
M,J

=

(
∂βp

∂M

)
A,J(

∂β

∂J

)
M,A

= −
(
∂βω

∂M

)
A,J(

∂βp

∂J

)
M,A

= −
(
∂βω

∂A

)
M,J
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3. Thermodynamics of slowly rotating thin matter shells in
a (2+1)-dimensional asymptotically AdS spacetime

The relevant equations in the slowly rotating limit, J << ml ,
are

M = 2πRλ =
R

4G3l

(
1− l

R
k

)

p =
1

8πG3l

(
R

lk
− 1

)

ω =
r−
r+l
− r−r+

lR2

The first integrability condition is equivalent to(
∂β

∂R

)
r+,r−

=
R

l2k2
β =⇒ β(R, r+) = k(R, r+) b(r+)
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3. Thermodynamics of slowly rotating thin matter shells in
a (2+1)-dimensional asymptotically AdS spacetime

From the integrabiliy conditions we also get

ω(R, r+, r−) =
ω0(r+, r−)

k
− r+r−

lR2k

From the dynamics ω0 is fixed to be

ω0(r+, r−) =
r−
lr+

Combining the last results gives

dS =
b(r+)r+

4Gl2
dr+

Taking the black hole limit fixes

b(r+) =
1

TH
=

2πl2

~
1

r+
=⇒ S(r+) =

πr+
2l2p

=
A+

4l2p

with lp =
√
G~ and A+ = 2πr+ .
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3. Thermodynamics of slowly rotating thin matter shells in
a (2+1)-dimensional asymptotically AdS spacetime

The local intrinsic thermodynamical stability of the shell is
guaranteed as long as the entropy of the system stays in a
maximum

We prescribe the function b(r+) as

b(r+) = 4Gαl2
ra+
la+2
p

This gives

S =
α

a + 2

(
r+

la+2
p

)a+2

Therefore, this thermodynamic system is stable if obeys

a = −1 and
R

r+
→∞
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4. Conclusions

By using the junction conditions we have obtained the rest
mass, pressure and angular velocity (measured at infinity) of a
rotating thin matter shell in a (2+1)-dimensional
asymptotically AdS spacetime.

Futhermore, we have studied the thermodynamics of that shell
in the slowly rotating limit.

Inserting those quantities in the first law of thermodynamics
led us to the entropy for the thin matter shell up to an
arbitrary function of the shell’s gravitational radius.

The matter contained in the shell specifies this function.
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4. Conclusions

We also take the shell to its gravitational radius which fixes
the temperature to be the Hawking temperature and we
recover the Bekenstein-Hawking entropy of a BTZ black hole

SBH =
πr+
2l2p

=
A+

4l2p
.

This seems to show some evidence that the degrees of
freedom of a black hole are situated at its event horizon.

The general case is an open problem to solve.

The difficulty relies on interpretating the pressure terms that
appear in the first law of thermodynamics.
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