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Our goal is to describe the gravitational waves generated by the
motion of disks of matter in the background of a black hole using
perturbation theory.

For simplicity we focused on the emission of gravitational waves when
a black hole is perturbed by a surrounding pressure-less fluid matter

Specifically, we work with the curvature perturbations within the null
tetrad formulations developed by Newman and Penrose.
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Formalism

In order to obtain the perturbed equations, one starts from the Bianchi
identities and the definition of the Riemann tensor (Chandrasekhar ’83)

Rµνλτ ;σ +Rµνσλ ;τ +Rµντσ ;λ = 0 , Rσµνλ Za
σ = Za µ;νλ − Zaµ;λν , .

These equations are projected on a null tetrad and become equations for
the Weyl scalars and spinor coefficients. The perturbed expression of these
equations is computed for the case of vacuum type D spacetimes to obtain
a master equation for the perturbed scalar

Ψ4 = −Cµνλτ k
µm∗ν kλ m∗τ ,

including the source terms given by Einstein’s equations.
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We derived the perturbation equation for the Ψ4 Weyl scalar for a static
spherically symmetric space time.

ds2 = −
(

α2 − γ2 β2
)

dt2 + 2 γ2 β dt dr + γ2 dr2 + r2 dΩ2,

where dΩ2 = dθ2 + sin2 θ dϕ2 is the solid angle element, and the lapse, α,
the radial component of the shift vector, β.
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We obtained the so called Teukolsky equation for vacuum type D
spacetimes (Teukolsky ’73), and then focused on the Schwarzschild
spacetime written in Kerr-Schild coordinates.

ds2 = −

(

1−
2M

r

)

dt2 +
4M

r
dt dr +

(

1 +
2M

r

)

dr2 + r2 dΩ2 .

and the tetrad

lµ =
1

2

(

1 +
2M

r
, 1−

2M

r
, 0, 0

)

, kµ = (1,−1, 0, 0) ,

mµ =
1

√
2 r

(0, 0, 1, i csc θ) ,

The resulting perturbation equation is an inhomogeneous wave equation.
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Matter content

We consider the matter source to be described by a pressure-less fluid

Tµν = ρ uµ uν ,

where ρ is the rest mass density and uµ is the four velocity of the dust.
Furthermore, we consider that the fluid is in-falling radially in the black
hole and the four velocity has only temporal and radial components,

uµ =
(

u0, u1, 0, 0
)

.

The evolution of the fluid is described by the continuity equation for the
current vector, Jµ = ρ uµ, and the conservation equation for the stress
energy tensor:

Jµ
;µ = 0 and T µν

;µ = 0 .
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With the radial in-falling matter, plus a decomposition of the density in
terms of the spherical harmonics with zero weight

ρ =
∑

lm

ρl,m(t, r)Y0
l,m(θ, φ) .

it is possible to separate the angular and radial part of the sources.
Furthermore, expanding the perturbation of Ψ4 as

Ψ4 =
∑

lm

RG
l,m(t, r)Y−2

l,m(θ, φ) ,

we can get a radial-time equation.
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The resulting second order equation can be reduced to a first order system.

We solved numerically this system using the method of lines with a total
variation diminishing Runge Kutta integrator with a four order spatial
stencil.
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Results

We parametrize the shells of matter using a Gaussian pulse

ρl,m(r, t = 0) = A0 e
−(r−r0)2/σ2

,
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The three phases of a gravitational signal: Initial burst, quasinormal
ringing and tail (Kokkotas and Schmidt ’99)
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We analyze the signal with respect the compactness of the shells,
σ = 1/2M , M , 3/2M , and 5/2M ,
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Gravitational response due to two consecutive pulses of fluid
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Then we consider a charged fluid falling into the black hole.

Jµ
el = qρuµ,

where q is the charge to mass ratio e/m. We solve the Maxwell equations
Fµν

;ν = 4π Jµ
el for the scalar φ2

φ2 ≡ Fµνm
∗µkν .

coupled with the perturbation equation.
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The compactness of the shell is reflected in both electromagnetic and
gravitational signals

10
-6

10
-3

10
0

10
-6

10
-3

10
0

10
-6

10
-3

10
0

1400 1450 1500 1550 1600 1650 1700
t/M

10
-6

10
-3

10
0

| R 
E
( t, r

o
 )|

σ = 0.5Μ

σ = 1.5Μ

σ = 2.5Μ

σ = 5Μ

10
-6

10
-3

10
0

10
-6

10
-3

10
0

10
-6

10
-3

10
0

1400 1450 1500 1550 1600 1650 1700
t/M

10
-6

10
-3

10
0

| R 
G

( t, r
o
 )|

σ = 0.5Μ

σ = 1.5Μ

σ = 2.5Μ

σ = 5Μ

15 / 18



The electric and gravitational quasi-normal modes are present if the shells
are compact enough. We obtained the frequencies using a fourier
transform and the results from the evolution match the results in the
frequency domain (Kokkotas and Schmidt ’99).
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We estimate the energy radiated as

d

dt
EGW = lim

r→∞

1

16π

∑
ℓ,m

|

∫
t

−∞

dt
′
R

G
ℓ (t

′
)|

2
.

d

dt
EEM = lim

r→∞

1

4π

∑
ℓ,m

|R
E
ℓ (t)|

2
.

We found a quadratic dependence between the electromagnetic and
gravitational energy emitted, of the form EEM/EGW = a q2, with
a = 12.417, 11.128, 10.928 for ℓ = 2, 3, 4 respectively.
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Conclusions

The compactness of the shells affects the gravitational and
electromagnetic emission.

Pressure-less matter induces electric and gravitational quasi-normal
modes on both signals. However there is no direct mixing between
frequencies.

The electromagnetic energy emitted after the falling of matter is
related with the energy carried by the gravitational waves via q2.
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