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Figurative representation of a black hole in action. All details of the infalling matter
are washed out. The final configuration is believed to be uniquely determined by
mass, electric charge, and angular momentum. Figure 1
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Physical Review Letters 112 (2014) 221101 (arXiv:1403:2757)	


IJMPD 23 (2014) 1442014 (arXiv:1405:3696), honorable mention on GRF Awards 2014	
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with E. Radu



The “no-hair” idea

Motivated by uniqueness theorems	

e.g: Israel 1967, 1968; Carter 1970; Hawking 1972; Robinson 1975, 1977; and many others	

Overview: “Four decades of black hole uniqueness theorems” D. Robinson (2004, 2009) 

Original idea: 	

“gravitational collapse leads to equilibrium black holes uniquely determined by M,J,Q - 	


asymptotically measured quantities subject to a Gauss law 	

and no other independent characteristics (hair)”
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ANGULAR MOMENTUM (<ip/mf.)

Closest stable circular orbits for the Schwarzschild and Kerr black holes. For Newtonian gravity
there are stable orbits of all radii down to zero. The parabola gives the radius of each orbit as a
function of angular momentum. For the curved geometries, there are both a minimum (black) and
a maximum (color) in the effective potential for each value of the angular momentum down to a
critical value below which there is only a point of inflection—hence no stable orbits. A is the mini-
mum Schwarzschild stable orbit; B and C are the minimum stable Kerr orbits for counterrotating
and corotating particles respectively. These results have great significance for the amount of gravi-
tational radiation a particle can emit before falling into a black hole. Figure 7

black hole, given by the Kerr geometry,
which is appropriate to a rotating sys-
tem.

The "standard solution" for a black
hole of given mass and angular momen-
tum has certain well defined quadmpole
and higher moments. One finds12'13

that any perturbation from the standard
Kerr solution decreases exponentially
with time. To the outside observer, all
details of the gravitational field get
washed out except mass and angular
momentum, provided that the original
perturbation was not too large.

In a similar way, all distributions of
charge near a black hole appear to a
distant observer to have spherical sym-
metry. The extreme gravitational field
near a black hole greatly distorts the
lines of force from the normal pattern.
Far from the black hole, the lines ap-
pear to diverge from a point much
closer to the center of the sphere than
the actual location of the charge. The
dipole moment goes to zero as the
charge approaches 2m. Nothing in the
final pattern reveals the true location
of the charge. We see in the black
hole simply mass plus charge, and no
other details. The law for the disap-
pearance of the dipole, p, as given by
R. Price, i s "

P
log t

This disappearance of the dipole
takes place according to the same kind
of law as the fadeout of perturba-
tions of the quadruoole and higher
moments of the mass distribution.

The collapse leads to a black hole
endowed with mass and charge and
angular momentum but, so far as we can
now judge, no other adjustable param-
eters: "a black hole has no hair."
Make one black hole out of matter;

another, of the same mass, angular
momentum and charge, out of anti-
matter. No one lias ever been able to
propose a workable way to tell which
is which. Nor is any way known to
distinguish either from a third black
hole, formed by collapse of a much
smaller amount of matter, and then
built up to the specified mass and
angular momentum by firing in enough
photons, or neutrinos, or gravitons.
And on an equal footing is a fourth
black hole, developed by collapse of a
cloud of radiation altogether free from
any "matter."

Electric charge is a distinguishable
quantity because it carries a long-range
force (conservation of flux; Gauss's
law). Baryon number and strangeness
carry no such long-range force. They
have no Gauss's law. It is true that
no attempt to observe a change in
baryon number has ever succeeded.
Nor has anyone ever been able to give
a convincing reason to expect a di-
rect and spontaneous violation of the
principle of conservation of baryon
number. In gravitational collapse, how-
ever, that principle is not directly vio-
lated; it is transcended. It is trans-
cended because in collapse one loses
the possibility of measuring baryon
number, and therefore this quantity can
not be well defined for a collapsed ob-
ject. Similarly, strangeness is no longer
conserved.

Angular momentum
The third property of a black hole is

angular momentum. When it is non-
zero, the geometry becomes more com-
plicated. One deals with the Kerr solu-
tion2 to the field equations instead of
the Schwarzschild solution. There are
two interesting surfaces associated with
the Kerr geometry, the "surface of in-

finite red shift" and inside it, the "event
horizon." An object at or within the
event horizon can send no photons to a
distant observer, independent of the
object's state of motion or the direction
of photon emission. For this reason,
the event horizon is also called the
"one-way membrane."

The Schwarzschild geometry repre-
sents the degenerate case of the Kerr
geometry, in which the surface of in-
finite red shift and the event horizon
coincide. In the general case, the two
surfaces are separated everywhere ex-
cept at the poles, as shown in figure 6.
The very interesting region between
these surfaces is called the "ergosphere."
A particle that comes within the ergo-
sphere can still, if properly powered,
escape again to infinity. However, its
life in this region has an unusual fea-
ture; there is no way for it to remain at
rest, rocket powered or not!

Energy can be extracted from the
ergosphere by a mechanism that may
occasionally have significance for a cos-
mic ray. Consider a particle that en-
ters the ergosphere and disintegrates,
one fragment falling into the hole and
the other escaping to infinity (see figure
6. R. Penrose3 has shown that the
process can be so arranged that the
emerging fragment has more energy at
infinity than the original particle.

The extra energy is effectively ex-
tracted from the rotational energy of
the black hole. If a particle can dip
through the ergosphere and escape with
some of the energy and angular mo-
mentum of the black hole, it is also true
that a particle that is captured can in-
crease the energy and angular mo-
mentum of the black hole. Capture is
possible when the particle passes by
sufficiently close to the black hole. The
critical impact is smaller for a capture
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Ruffini, Wheeler (1971)



Hairy black hole solutions exist (D=4, asymptotically flat):

Early example: Einstein-Yang-Mills theory	

Bizón 1990; Kunzle and Masood-ul-Alam, 1990; Volkov and Galtsov, 1990 

Show mathematical limitations of the `no-hair’ idea. 	

But (astro)physically relevant?	


Other examples were obtained in: Einstein-Skyrme, Einstein-Yang-Mills-
Dilaton, Einstein-Yang-Mills-Higgs, Einstein-non-Abelian-Proca, etc	

Review by Bizón 1994; Volkov and Gal’tsov (1999)	


`Hair’ anchored on non-linearities of the field. Hard to have insights.	




Plan:	

!

- Report a new type of exact solution of hairy black holes (with scalar hair)	

!

- Report a new type of mechanism to grow hair; based on the 
superradiant instability



Ingredient 1: Boson stars:	

Kaup (1968); Ruffini and Bonazzola (1969)	


Review: Liebling and Palenzuela (2012)

Einstein-Klein-
Gordon theory:

Solutions preserved 
by a single helicoidal 
Killing vector field:
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Rotating 	

boson stars:	

Yoshida and Eriguchi (1997)	

Schunck and Mielke (1998)
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Boson stars phase space (nodeless):
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For rotating boson stars:	

Schunck and Mielke (1998)

J = mQ

Convenient parameter: q ⌘ mQ

J



Ingredient 2: Klein-Gordon equation in Kerr (linear analysis)

⇤� = µ2� � = e�iwteim'S`m(✓)R`m(r)

Generically one obtains quasi-bound states:

! = !R + i!I
critical frequency

wc = m⌦H

wI < 0 if wR > wc decay

wI > 0 if wR < wc
grow	


Press and Teukolsky 
(1972)

wI = 0 if w = wc
true bound 
states: clouds

Radial Teukolsky equation: Teukolsky (1972); Brill et al. (1972)
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Klein-Gordon (linear) clouds around Kerr:	

Damour, Deruelle and Ruffini (1976);  Zouros and Eardley (1979); Detweiler (1980); Hod 2012; 	


(...); Yakov Shilapentokh-Rothman (2014)
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 See Benone’s talk



Mix the ingredients: Einstein Klein-Gordon (non-linear setup)

Ansatz:

ds2 = �e2F0(r,✓)Ndt2 + e2F1(r,✓)

✓
dr2

N
+ r2d✓2

◆
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take: w < µ

Four input parameters: m,w, rH , n

Single KVF BH c.f. 	

Dias, Horowitz and Santos (2011)

Near the horizon:
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Hairy black holes 



Hairy black holes phase space
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Hairy black holes phase space

- Can violate Kerr bound

 0

 0.5

 1

 0  0.5  1  1.5

M
µ

 

Jµ2

Boson Stars (q=1)

 Kerr limit   (q=0)

m=1
 0

 2

 4

 6

 0  0.1  0.2  0.3

A
H

//µ
2

Jµ2

Kerr BHs

HBHs



Hairy black holes phase space

- Can violate Kerr bound
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Hairy black holes phase space

- Non-uniqueness (different solutions for same M,J); but degeneracy raised with q

- Can violate Kerr bound

- Entropically favoured;
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Geroch-Hansen quadrupole moment:	

Geroch (1970); Hansen (1974); Pappas and Apostolatos (2012)

 0

 50

 100

 150

 0.75  1  1.25  1.5  1.75  2

r
e
d
u
c
e
d
 
q
u
a
d
r
u
p
o
l
e

J/M2

1H/µ=0.99
1H/µ=0.9875

1H/µ=0.98

m=1 q=1

q=0.98

q=0.9

q=0.7

q=0.3

q=0

reduced quadrupole =

quadrupole

�J2/M

Similar considerable deviations occur for the orbital frequency at the ISCO.

Hairy black holes are more star-like



Summary:

How general is this mechanism?	

A (hairless) BH which is afflicted by the superradiant instability of 	


a given field allow a hairy generalization with that field.

Branching of Kerr BHs towards a new family of solutions due to 
superradiant instability

Other properties deserve further study  (stability, 
phenomenology, evolution… Cardoso’s and Brito’s talk )     

Kerr BHs with scalar hair interpolate between Kerr and boson stars. 	

!

Can be understood at linear level: not anchored on non-linear effects.



Thank you for your	

attention!


