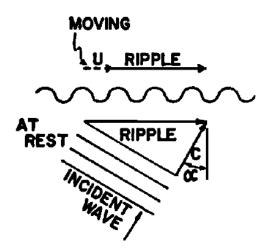
Growth and decay of scalar clouds outside (rotating) black holes

ా Vítor Cardoso సం (CENTRA/IST & Perimeter) BHs7 Aveiro

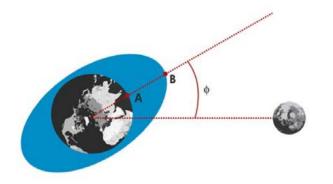
More at http://blackholes.ist.utl.pt


erc supports this project

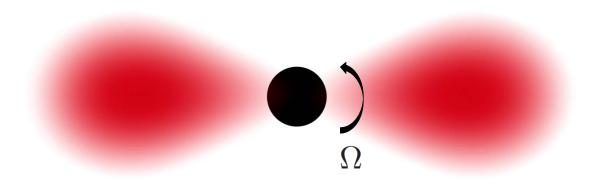
Berti, Brito, Carucci, Gualtieri, Ishibashi, Okawa, Pani, Sotiriou, Sperhake, Witek

* * *

Brito, Cardoso, Pani, Superradiance in Black Hole Physics 2015


Friction & superradiance

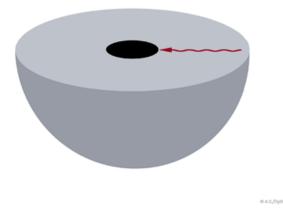
Ribner, J. Acous. Soc. Amer.29 (1957)



Tamm & Frank, Doklady AN SSSR 14 (1937)

G. H. Darwin, Philos. Trans. R. Soc. London 171 (1880)

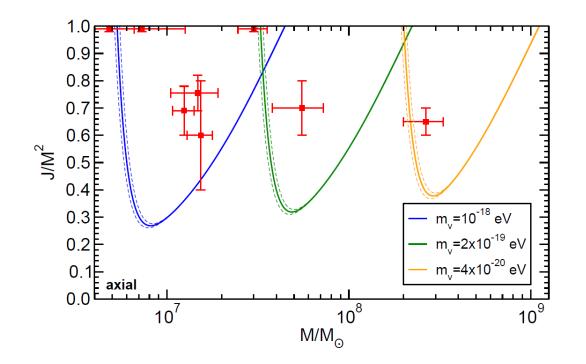
$\Phi \sim e^{-i\omega t + im\phi} \rightarrow (Angular) phase velocity = \frac{\omega}{m}$



$\omega < m \Omega$

Zel'dovich, Pis'ma Zh. Eksp. Teor. Fiz. 14 (1971)

Black holes and superradiance


Friction built-in through one-way membrane (horizon) Can construct unstable states by forcing wave to bounce back

Zel'dovich, Pis'ma Zh. Eksp. Teor. Fiz. 14 (1971), *Damour et al*, Lett.Nuovo Cim. 15 (1976); *Cardoso and Dias*, Phys.Rev. D70 (2004); *Brito*, *Cardoso and Pani*, in preparation (2015)

Bounding the "photon" mass

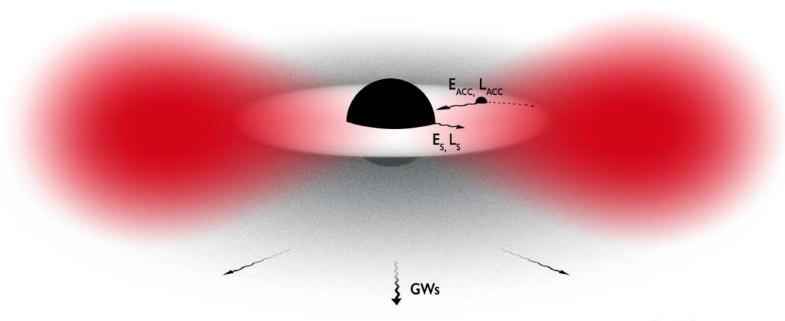
Pani et al PRL109, 131102 (2012)

Depend very mildly on the fit coefficient and on the threshold

 $\tau_{Salpeter} \! \rightarrow \! timescale$ for accretion at the Eddington limit

Bounding the graviton mass

Brito et al PRD88, 023514 (2013)

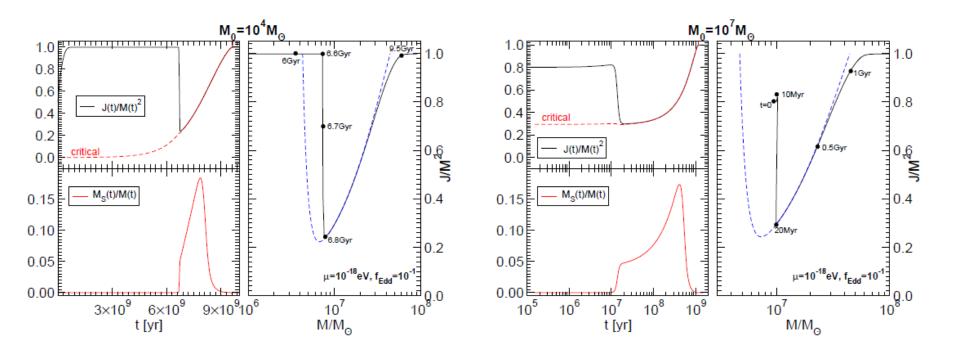

Bound on photon mass is model-dependent: details of accretion disks or intergalactic matter matter...but gravitons interact very weakly!

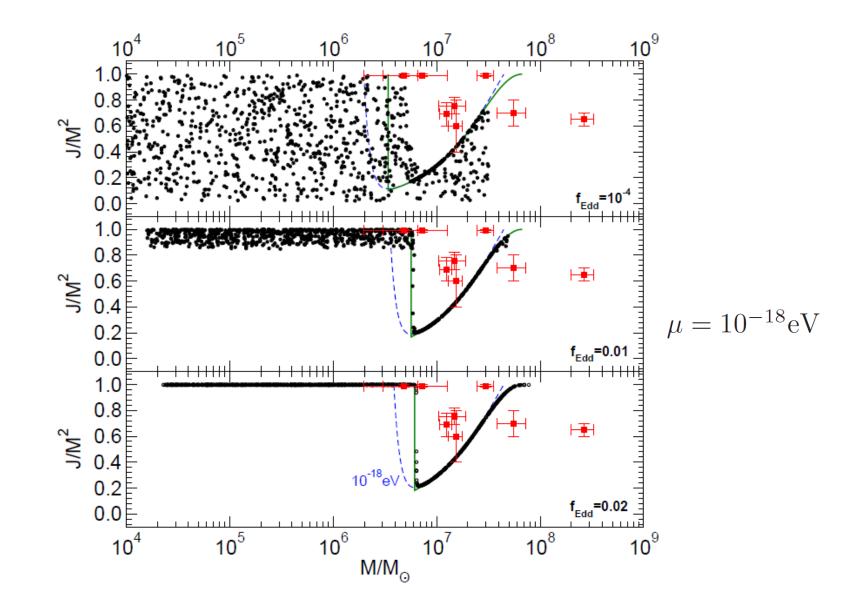
$$\bar{\Box}h_{\mu\nu} + 2\bar{R}_{\alpha\mu\beta\nu}h^{\alpha\beta} - \mu^2 h_{\mu\nu} = 0$$

VALUE (eV)	DOCUMENT ID		COMMENT
<6 × 10 ⁻³²	¹ CHOUDHURY	04	Weak gravitational lensing
 We do not use the following data for averages, fits, limits, etc. 			
$<5 \times 10^{-23}$	² BRITO	13	Spinning black holes bounds
$<4 \times 10^{-25}$	³ BASKARAN	08	Graviton phase velocity fluctuations
$< 6 \times 10^{-32}$	⁴ GRUZINOV	05	Solar System observations
$>6 \times 10^{-34}$	⁵ DVALI	03	Horizon scales
$< 8 \times 10^{-20}$	^{6,7} FINN	02	Binary pulsar orbital period decrease
	^{7,8} DAMOUR	91	Binary pulsar PSR 1913+16
$< 2 \times 10^{-29} h_0^{-1}$ $< 7 \times 10^{-28}$	GOLDHABER	74	Rich clusters
$<7 \times 10^{-28}$	HARE	73	Galaxy
$< 8 \times 10^4$	HARE	73	2γ decay

Nonlinear effects are expected to be negligible!

Gravitational-wave emission and accretion?


© a.s./grit


Accretion:

$$\dot{M}_{\rm ACC} \equiv f_{\rm Edd} \dot{M}_{\rm Edd} \sim 0.02 f_{\rm Edd} \frac{M(t)}{10^6 M_{\odot}} M_{\odot} {\rm yr}^{-1}$$
$$\dot{J}_{\rm ACC} \equiv \frac{L(M,J)}{E(M,J)} \dot{M}_{\rm ACC}$$

Gravitational-wave emission:

$$\dot{E}_{\rm GW} = \frac{484 + 9\pi^2}{23040} \left(\frac{M_S^2}{M^2}\right) (M\mu)^{14}$$
$$\dot{J}_{\rm GW} = \frac{1}{\omega_R} \dot{E}_{\rm GW}$$

Random distributions 1000 BHs, with initial mass between $\log_{10} M_0 \in [4, 7.5]$ and $J_0/M_0^2 \in [0.001, 0.99]$ extracted at $t = t_F$, with t_F distributed on a Gaussian centered at $\bar{t}_F \sim 2 \times 10^9$ yr with width $\sigma = 0.1 \bar{t}_F$.

Strong field gravity is a fascinating topic

Fundamental fields, either in form of minimally coupled fields or under curvature couplings have a very rich and unexplored phenomenology: condensates outside BHs and compact stars act as gravitational-wave lighthouses, but can also act as dark matter.

Superradiant instabilities can provide strong constraints on masses of ultra-light bosons, turning black holes (and stars with dissipation channels) into effective particle detectors.

New BH solutions are possible stationary end-state of superradiant instability (see Herdeiro and Benone). Our results show that BHs grown out of Kerr are Kerr to a good precision

Thank you

