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Figure 6: Space-time diagramatic construction to derive time dilation (left) and space
contraction (right).

Time dilation In the Minkowski space-time formulation we have just developed, it
becomes straightforward to identify the phenomenon of time dilation (Fig. 6, left).
Consider two events in a reference frame, occuring at a fixed spatial coordinate but
at different times. Onde can describe the separation between such two events by a
space-time vector given by

Ar = (¢T,0,0,0) — (0,0,0,0) = (cT,0,0,0) (41)

where we enphasize that this separation vector is given by the difference between the
locations, in space-time, of the two events. One can see what a moving observer sees
by applying a Lorentz boost with velocity v.

vy =% 00 cr 7031
/ A ¢ v 00 0 =T
Art = A AP — c = c (42)
0 0 10 0 0
0 0 01 0 0

One sees immediately that the new time separation between the two events is

T

T =~T = (43)

’1}2

1 - —
2

thus, a moving observer will see the time between the two events slowing down, in its

rest frame.

Space contraction In a very similar way, one can derive the phenomenon of space
contraction. This consists of a shortening of lengths measured between two events
which are spatially separated, when measured by a moving observer in its rest frame.
(Fig. 6, right). Let us consider the following vector

Art = (0,d,0,0) = Artn,, ArY =d* >0 (44)
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that is, the distance between the two events in the frame where they are simultaneous
is given by d. One can associate to these spatially separated events a rigid rod, with
two timelike world line trajectories (vertical lines in the diagram). The world line of
the end of the rod at the origin is represented by a vector w*and the world line of the
other end is represented by a vector r#. Thus, the separation vector between the two
events is actually obtained from

Art =rt — ¥ — (t7 da Oa 0) - (tv Oa 07 0) = (07 d’ O’ O) (45)

To determine the distance between ends of the rod in motion, one needs to intersect the
world lines of each end with a spatial axis of the moving frame so that we measured the
distance when the two ends are simultaneous in the moving frame. First, we transform
the vector associated with the trajectory of each end

v =2 0 0 t Yt —ved
ﬂ/ _ P«/ v —’}/% 'Y 0 0 d _ _/ygt + ’yd
r AR Y — 0 0 10 0 0 (46)
0 0 01 0 0
v —ve 00 t vt
Nl . 'u/ v —”}/% "}/ 0 0 0 _’}/%t
wh =AY w” — 0 0 10 0 0 (47)
0 0 01 0 0

Now, the events will be simultaneous in motion, when ¢ = 0 for both. For the vector
r* one needs

=0 (48)
&t — 7%d =0 (49)
=t = gd (50)
and for w*’
vt=0=1t=0 (51)

The spacelike vector between the two events which are simultaneous in the moving
frame is now

2
’ ’ v ’ () v
Art =t (t = —d)—w" (t = 0) = (0, —y=(=d)+~d,0,0)—(0,0,0,0) = (0,4/1 — —d,0,0)
c cc c
(52)
which means that the length of the rod as seen in the moving frame is shorter.
An important observation of such constructions in the diagrams of figure 6, is that
events which are simultaneous in a frame are not necessarily simultaneous in a moving
frame.
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Lecture exercise

To obtain the 4-force in a moving frame, one needs to transform the Newtonian force
that we have obtained in the lecture to a moving frame with 3-velocity ¢ such that an
observer in such frame sees the particle with such a velocity (note that in fact, that
since we are observing the particle in motion, we must use the inverse transformation
v — —v, that is, the particle rest frame is moving with velocity —¢ with respect
to our rest frame). Since the force is a 4-vector, it must transform according to the
corresponding Lorentz transformation. Thus we conclude that in general

—

- v =
F“—>(7FN'E,’}/FN) (53)

The spatial part of the relativistic Newton equations is then

d*7 -
mop = ’}/FN (54)
dt d*v _,
S mogar © (55)
d [ dtdr .
& moy o (%E) = ~Fy (56)
d . =
& tmar) = B 57
t
d =
N (m(v)¥) = Fy (58)

This equation is similar to the non-relativistic Newton equation except that the mass
m(v) depends on the velocity of the particle. As a consequence, the effective mass of
the particle increases as we approach the speed of light since the particle acquires more
and more kinetic energy(though never being able to reach exactly ¢ which requires an
infinite amount of energy)

Regarding the F° component one gets

mocf;ﬁo - yﬁN-g (59)
emgi (D) = ahv-D (60)
<:>m007% (v) = vﬁw-g (61)
<:>m007% () = vﬁw-g (62)
(:)%(ch) = Fy-0 (63)

This equation is similar to the equation for the variation of the kinetic energy in non-
relativistic Newtonian dynamics Feinetica = mv? /2, but now it is replaced by mc?. This
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quantity describes the variation of the total energy of the particle in special relativity
which is interpreted as being equivalent to m (in natural units ¢ = 1 it is even more
manifest). One can verify this is the case by expanding in the small velocity limit

2 1 2 1

met = ———myc? ~ moc® + §m0v2 + ... (64)
’U2

c2

So besides the kinetic energy we get the famous rest energy Ey = moc®. The total
kinetic energy is the difference between the total energy and the rest energy

Ey, = mc® — myc? (65)

This equivalence between the rest mass of the particle and energy was one of the biggest
surprises of special relativity.
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